Welcome to our “Notepad Series” of fast, informal instructional videos. In these short sessions we try to make surface texture understandable for those who rely on the information but are not necessarily experts in the field. Each video addresses common topics related to surface specification, measurement and interpretation, in five minutes or less.
Notepad Series Videos
1. What is Roughness?
When we talk about surface texture, what is roughness? Does the word “roughness” mean the same thing to everybody? The fact is, what we call “roughness” is entirely based on our application. This video shows an example, and why it is so important to specify the range of features that we will call “roughness” in any given situation.
2. Roughness and Waviness
In this second Notepad Series video we look at the process of separating data into features that we will consider shorter-wavelength “roughness” versus longer-wavelength “waviness” for a given application. Seeing the process drawn out, step by step, can really clarify how the roughness and waviness profiles are created, and what they really mean.
3. Bandpass Waviness
In our last video, “Roughness and Waviness,” we looked at how to separate longer wavelength “waviness” from short-wavelength “roughness.” In “Bandpass Waviness” we go a step further and also separate waviness from the long-wavelength “form” shapes. Making this distinction lets us target the waviness features that could matter most to you. For example, if you are trying to create a sealing surface, controlling the waviness-related lumps or bumps may be your biggest challenge. One surprising upshot of controlling these features separately: the added controls may actually let you loosen tolerances on the long wavelength form as a result.
4. Average Roughness (Ra)
The average roughness (or “Ra”) value of a surface is the most common number describing the “amount” of roughness on that surface. While the Ra value (or “Sa” for areal / 3D measurements) may give a general sense of the surface texture, it cannot distinguish between two surfaces of different shapes. For example, a jagged surface with sharp spikes could have the same Ra value as a smoothly plateaued surface with lots of deep porosity. As we show in this video, describing a surface using only Ra is like describing a concert only by loudness! Yet, Ra (or Sa) may still have its uses in some production settings.
5. Average Peak-to-Valley Roughness (Rz)
In “Rz (Average Peak-to-Valley Roughness)” we look at the world’s second most common surface texture parameter. Our eye can do a pretty good job of telling us the general roughness of a surface. Rz works similarly. One caveat: there are other definitions of Rz out there—we will show you the differences and what to look for.
6. The Material Ratio Curve
In “The Material Ratio Curve” we look at this rather well-known curve (historically known as the Abbott-Firestone Curve). It shows us the amount of material that we encounter as we move further down into a surface. That can tell us a lot about the surface: how durable it may be, how it could carry lubrication, how well it may wear…even how comfortable it may be to slide around on (not recommended!).
In this introduction we show how the material ratio curve is derived. Then, we show you some examples that will help you estimate the nature of a surface from the shape of its material ratio curve.
If you like this kind of training approach and want to go deeper, contact Digital Metrology to learn more about our online and onsite training and consulting.
Be sure to stay tuned for these upcoming topics:
- A Simple Filter
- Gaussian Filters
- and more to come…
Please Contact us if have a topic that you would like us to cover.
Want to know when new Notepad Series videos are available? Subscribe to our mailing list or to the Digital Metrology YouTube channel.